Kimi K2 Thinking: AI Penalaran Mendalam dengan Konteks yang Diperluas
Model MoE dengan parameter triliunan yang dirancang untuk penalaran multi-langkah mendalam dan pemahaman konteks yang diperluas. Dengan jendela konteks 256K token dan mode berpikir native, Kimi K2 Thinking menghasilkan performa state-of-the-art pada tugas penalaran kompleks sambil mempertahankan efisiensi biaya. Sepenuhnya open-source di bawah lisensi Modified MIT.
Apa Kata Developer Tentang Kimi K2 Thinking
Tonton ulasan teknis dan demonstrasi langsung dari peneliti AI, developer, dan pakar teknologi yang mengeksplorasi kemampuan Kimi K2 Thinking

Kimi K2 Thinking is CRAZY... (HUGE UPDATE)
now waiting for a 20B distillation

Kimi K2 Thinking Is The BEST Open Source Model - First Look & Testing
Kimi's writing is always so good. It's human-like and rarely detected in AI detector.

Kimi K2 explained in 5 minutes
Quick correction: the recommended hardware on MoonShot AI's site for running the k2-base is 8 units of h100 for the quantized version so the cost is at least 8x than what i calculated here. It's still a bit behind in feasibility but the point remains that the gap will change. I apologize for the miscalculation!
Perbandingan Benchmark Performa
Lihat bagaimana performa Kimi K2 Thinking dibandingkan dengan model AI terkemuka di berbagai benchmark penalaran, coding, dan agentic.
Performance Across Key Categories

Comprehensive performance comparison across Agentic & Competitive Coding, Tool Use, and Math & STEM benchmarks
Coding Tasks
Software engineering and competitive programming benchmarks
| Benchmark | K2 Thinking | GPT-5 (High) | Claude Sonnet 4.5 | K2 0905 | DeepSeek-V3.2 |
|---|---|---|---|---|---|
| SWE-bench Verified (w/ tools) | 71.3 | 74.9 | 77.2 | 69.2 | 67.8 |
| SWE-bench Multilingual (w/ tools) | 61.1 | 55.3* | 68.0 | 55.9 | 57.9 |
| LiveCodeBench v6 (no tools) | 83.1 | 87.0* | 64.0* | 56.1* | 74.1 |
| OJ-Bench (cpp) (no tools) | 48.7 | 56.2* | 30.4* | 25.5* | 38.2* |
| Terminal-Bench (w/ simulated tools) | 47.1 | 43.8 | 51.0 | 44.5 | 37.7 |
Reasoning Tasks
Multi-step reasoning, mathematics, and STEM problem-solving
| Benchmark | K2 Thinking | GPT-5 (High) | Claude Sonnet 4.5 | K2 0905 | DeepSeek-V3.2 | Grok-4 |
|---|---|---|---|---|---|---|
| HLE (w/ tools) | 44.9 | 41.7* | 32.0* | 21.7 | 20.3* | 41.0 |
| AIME25 (w/ python) | 99.1 | 99.6 | 100.0 | 75.2 | 58.1* | 98.8 |
| HMMT25 (w/ python) | 95.1 | 96.7 | 88.8* | 70.4 | 49.5* | 93.9 |
| GPQA (no tools) | 84.5 | 85.7 | 83.4 | 74.2 | 79.9 | 87.5 |
* indicates values from third-party reports or unofficial sources
Data source: Official Kimi K2 Thinking Model Card
Panduan Mulai Cepat
Deploy Kimi K2 Thinking pada infrastruktur Anda menggunakan vLLM. Setup sederhana 5 langkah untuk inferensi production-ready.
Hardware Requirements
Minimum setup for deploying Kimi K2 Thinking:
- •8x GPUs with Tensor Parallel (NVIDIA H200 recommended)
- •Supports INT4 quantized weights with 256k context length
Install vLLM
Install vLLM inference framework:
pip install vllmDownload Model
Download the model from Hugging Face:
huggingface-cli download moonshotai/Kimi-K2-Thinking --local-dir ./kimi-k2-thinkingLaunch vLLM Server
Start the inference server with essential parameters:
vllm serve moonshotai/Kimi-K2-Thinking \
--tensor-parallel-size 8 \
--tool-call-parser kimi_k2 \
--reasoning-parser kimi_k2 \
--max-num-batched-tokens 32768Test Deployment
Verify the deployment is working:
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "moonshotai/Kimi-K2-Thinking",
"messages": [
{"role": "user", "content": "Hello, what is 1+1?"}
]
}'For complete deployment guide including SGLang and KTransformers:
Official Deployment GuideKemampuan Utama Kimi K2 Thinking
Temukan fitur-fitur kuat yang membuat Kimi K2 Thinking ideal untuk penalaran kompleks dan alur kerja pengembangan.
Penalaran Chain-of-Thought Mendalam
Dilatih end-to-end untuk penalaran multi-langkah dengan mode berpikir native. Mempertahankan logika yang koheren di seluruh 200-300 panggilan alat berurutan untuk pemecahan masalah kompleks.
Pemahaman Konteks yang Diperluas
Jendela konteks 256K token terdepan di industri memungkinkan pemrosesan seluruh codebase, dokumen panjang, dan proyek multi-file sambil mempertahankan konteks penuh sepanjang waktu.
Arsitektur MoE Trillion-Parameter
Desain Mixture-of-Experts 1 triliun parameter dengan 32B parameter aktif per forward pass, menghasilkan performa luar biasa dengan biaya komputasi yang efisien.
Kemampuan Coding & Agen Superior
Mencapai 71,3% pada SWE-bench Verified dan 83,1% pada LiveCodeBench v6. Unggul dalam tugas agentic dengan 60,2% pada BrowseComp dan 44,9% pada Humanity's Last Exam.
Kuantisasi INT4 Native
Pelatihan sadar kuantisasi memungkinkan akselerasi inferensi 2x dengan presisi INT4 sambil mempertahankan kualitas model untuk deployment production.
Open-Source & Hemat Biaya
Dirilis di bawah Modified MIT License dengan harga API $0,60/M token input ($0,15 dengan cache) dan $2,50/M output - 60-80% lebih murah dari GPT-4 dan Claude.
